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The phenomenological consideration of the gas laws,

tension,

NASA TT F-11,497

PROPERTIES AND APPLICATIONS OF MOLECULAR FORCES

F. London

ABSTRACT: The attractive forces between mole-
cules can be obtained simply in approximate form
on the basis of a dispersion curve alone, Z.e.,
from purely optical data. In sharp contrast

to the electrostatic and valence type forces pre-
viously considered, these forces derived from

the dispersion curve actually show the character-
istics of a general cohesion. This 1is an attrac-
tive force, comparable to gravitation, which
exists between many molecules simultaneously

and (at least approximately) remains constant.

It is only on the bastis of this superposability
of molecular forces that it is possible to ex-
plain the parallelism which has often been ob-
served between the van der Waals deviations of
real gases, heats of vaporization, heats of ab-
sorption, and other manifestations of molecular
forces; it places all of them on a common the-
oretical basis, which could not be provided by

a consideration of electrostatic and valence-
type force effect alone. After the van der Walls
correction had been determined previously from
the abovementioned optical data, it became pos-
sible to determine from these same data the heats
of sublimation of molecular lattices (§4), heats
of absorption of absorbed gases (85) and dis-
sociation energies of molecules held together

by van der Waals forces (§ 6). The accuracy

of the agreement remains strictly within the
boundaries which are still imposed by the lack

of accuracy in the available empirical data and
a lack of knowledge of the repulsive forces.

INTRODUCTION

surface
absorption, condensation and similar phenomcna leong ago
led to the assumption of a common molecular attractive force common

Numbers in the margin indicate pagination in the original text.
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to all of these processes. Consequently, the most elementary molec-
ular-theoretical treatment of these phenomena usually attributes to
the individual molecules a sort of uniform, fixed, adhesive force.
Studies of this type, which proceed on the basis of this extremely
primitive viewpoint, seek to relate molecular attraction to the bal-
ance of our knowledge of the electrical structure of matter; they
usually discuss the electrostatic effect of fixed or polarizable
charges; here, however, they are faced with the difficulty that /223
electrostatic models, owing to the duality of positive and negative
electricity, are in no position whatsoever to produce a common
attraction like that of gravitational forces. Either we have the
case that two bodies are attracted by a third, while quite dif-
ferent forces simultaneously exist between the first two bodies

and are mostly repulsive forces, (on the other hand) if the forces
are based on the displaceability of the charges, the force prevailing
between two bodies is dependent on whether a similar third body

is in the vicinity. 1In general, it is not justifiable to add together
the forces which two isolated, freely movable systems of charges
exert on one another, in a simple manner like the central forces

of fixed force centers; for example, on this basis it is completely
impossible to understand how the same forces which are created

by deviations from the ideal gas laws according to the van der

Waals theory can remain critical for the liquid state only to an
approximate degree. Even the effects which are based on polariza-
bility will arise mutually in the molecular structure of a liquid.

In any case, the superposition of these forces requires a careful
consideration of all details of their mutual spatial positions

and orientations; they are anything but fixed superposable central
forces.

In addition to these forces, which are based on static and
possibly polarizable charge distributions, a discussion of molec-
ular attraction also involves those effects which arise from the
fact that a molecule in reality is not a static-elastic charge
continuum, but contains an extraordinarily rapid, internal electron
movement, whose time averages show the same charge structure which
served as the basis of the previously discussed electrostatic con-
siderations.

It has been shown that the mutual "short period disturbances"
of precisely these rapid internal motions of the electrons give
rise to attractive forces between two molecules, which in many
cases form the principal component of the van der Waals attraction

L1]). As shown in this paper, the potential of these forces can

be given for great distances if the dispersion formula of the specific
molecule is known. It is therefore a value which can be determined /22u
in principle from optical measurements. We will show (§2) that

these forces are basically different from all electrostatic and
valence type forces in that they give rise to a gemneral additive
attraction and are therefore suitable, in the field of their applic-
ability, for placing the many types of phenomena of molecular attrac-
tion on a very simple, common theoretical basis with the assump-




tion of six superposable forces.

In the following, I would like to mention a few particularly
appropriate applications of these forces which in no way claim
to exhaust the subject.

§1. AN ELEMENTARY MOLECULAR MODEL

It will perhaps be useful to begin with a detailed discussion
of an elementary and readily resoluable example to show how these
molecular forces come about. As the simplest molecular model,
we will consider a quasi-elastic dipole whose variable electrical
moment is described by the vector er, m and o are its mass and
polarizability, and P is the impulse which belongs to €. The
Hamiltonian of the two molecules of this kind which are located
at a fixed distance R from one another can then be broken down
into three components: the kinetic energy, the potential (quasi-
elastic) energy of the molecules individually, and the interaction
potential of the molecules with one another, of which only the
dipole component will be considered:

1 o o 62 o . 32 \
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Here X1, y1, %1 are the components of 13 2, Y2, 37 are those
of T23; the origins of the coordinates are assumed to lie at the
centers of gravity of the molecules, the axes of the system of
coordinates are parallel to one another, and we must particularly .
imagine the 2-axes to be oriented in the direction of the line
connecting the centers of gravity of the molecules. If we write
the generalized coordinates of the principal oscillations,

L= ( %r) | Po= (v 3+ P.) |

+ V2 1 2 | V'é l l
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the Hamiltonian then breaks down into a series of six decoupled
ocscillators as follows:
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Here v = is the eigenfrequency of the isolated dipole.
vmao
According to gquantum mechanics, an oscillator with frequency has
the series of energy values(n + 1/2) with n = 0, 1, 2... Tor
the fixed oscillators in (2), this gives a total energy
a5 D (= e Wi L £ 1) o
E = (ny +ng + Dl + 0y + ny + D *\/:z : )’.w nz—é—i’—,hv » (4)
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where the six numbers Moo Ny take on the integer values 0, 1,
2, 3, ... completely indegendently of one another. The v, is
expanded by powers of a/R> and we have
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The first term is independent of R; it represents the charac-
teristic energy of the two molecules individually.

The second term (first approximation) is based on a resonance
distortion caused by "energy exchange" (mirror symmetry) ([2],
Chapter 2, Section 5). It definitely vanishes for the ground

state (n; = n; = ...n = 0) and, since we will not concern our-

selves here with the forces between excited molecules, we can
disregard any further consideration of it. Dipole type force
effects are involved with a potential proportional to *1/R3 (at-
traction as often as repulsion) which always appear between two
systems when an energy quantum of one system "fits" into the other
system, i.e., when resonance is present in the quantum mechan-
ical sense, and also if the particular transition is not subject
to any forbidden selection. In practice, this case therefore
appears only between similar and partly excited systems; it will
perhaps play an important role in the explanation of certain photo-
chemically produced molecular forces [3], because the forces in
question can always predominate as first order effects over the




molecular forces which exist between unexcited molecules,

The third term of (5) (the second approximation) is involved
primarily in the interaction between unexcited molecules; attrac-
tive forces are involved under all conditions.! For the deepest

state (n} = nt . n, = 0) we extract specially from (5) the
interaction e%ergy

4 B (6)

If we had quantized the oscillators in the sense of the earliest
concept of the quantum theory "as integers" [nhv instead of (n+l/2)
hv], then we would have omitted the 3 and 6 in (5) and would have
found no interaction energy whatsoever in the deepest state. This
is in complete agreement with the fact that resting oscillators,
according to classical theory, do not polarize one another if
they do not already possess a multipole to begin with. The appearance
of forces in the normal state is therefore exclusively related
to the presence of a zero point motion; they are based on a mutual
disturbance of this zero point motion and generally do not differ
from short period disturbances, in the sense of classical theory.

Hence, the eigenfunctions of the molecular pair in the ground
state can be made up directly from the known features of the harmonic
oscillator, and we can see that the undisturbed function

~1m|°( l
+13) |
Yo=¢€ h * }

is transformed by the disturbance into a function ¢ of the follow- /227
ing form (we use local polar coordinates and expand by a/R )
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The square of this function, as we know, gives each configura-
tion of the system a certain rdlative probability. As we easily
can see, the configurations with dipole attraction are weighted
more heavily, while those with repulsion (on the other hand) are
given less statistical weight, without the molecules individually
receiving an average dipole moment in the process [tl =0, €, = 0,

but (C1%¥,) # 01].

! The fact that attractive forces always result in this case for
the excited state is probably a special property of the harmonic
oscillator. On the other hand, it can generally be shown [1, p.
251] that molecules in the normal state always attract one another
in the second approximation, regardless of how the molecules are
produced. '



In these discussions, for lack of more empirical data, we
will frequently make use of the simple Formula (6). For the case
that only one excited state can be reached, beginning at the ground
state (or still more gemnerally: if all of the states that can
be reached with significant transition probability from the ground
state) have a small energy difference between them (small relative
to the energy difference between these states and the ground state),
(6) remains in effect even for this case, regardless of how the
molecules in general were produced. We will show this later on.

The entire consideration is limited to distances R under all
conditions, which satisfy the condition R3 > a. For R3 < 2a, Vg
becomes imaginary, i.e., the two oscillators no longer oscillate
around their resting positions, but are torn apart mutually aperiod-
ically; in addition, with respect to these distances, the spatial
extent of the dipoles is in no way to be disregarded and the use
of the Hamiltonian (1) is no longer legitimate.

§2. THE ADDITIVITY OF THE MOLECULAR FORCES

This remarkable property of the molecular forces will not
be demonstrated on the special model of the previous section,
but in complete generality for any molecule.

It has already been pointed out [1, Section 2] how the inter-
action energy of two molecules at a fixed distance R can be obtained

approximately if the eigenfunctions of the two molecules are given.

Let one molecule be described by the series of eigenfunctions /228

Yo, V1, ¥2.... with the corresponding eigenvalues Fg, Fy, E2...;

the other molecule, which is either like the first or unlike it,
will be described by the eigenfunctions ¢g, ¢$1, ¢2... and the eigen-
values Fqg, F1, Fo... . We will also have V as the function of the
interaction between the two molecules, which assigns the classic
potential value to every configuration of electrons and nuclei,

and as such is therefore independent of the position coordinates

of all components of the molecule (Coulomb potential). As we know,
V has the ability to decompose into a sum whose individual summands
depend on only two different particles.

This permits us to develop an approximation method in the usual
manner, which shows the interaction energy € of a molecule in
a state wk with another in the state ¢Z, both of them located
at a fixed distance R from one another, and it takes the form of
a series of successive approximations
1
ey =& T EG T e ‘

using the specific integral?

2 The asterisk (%) stands for the transition to complex conjugates.
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where the integration is to be extended over all configurations
of the molecular components at fixed molecular centers of gravity.
These integrals (8) are functions of the distance R between the
centers of gravity of the molecules, which is to be treated in inte-
gration as a constant parameter. The disturbing energy in the first
approximation, i.e., the interaction of the two molecules without
consideration of the fact that they deform one another mutually,
is given by the expression

&= Ve 11, f (9)
the disturbing energy in the second approximation is given by the
expression

V.. J¢2 1
F-I A S ol | ~ ]_r ll (]
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etc. Hence, the method is applicable in this form only when the

following condition is fulfilled:
. - ° ~
|Ey +Fi— By — Fp | > Ve, wr || (11)

It is true that for a number of terms in (10), this condition
is not fulfilled; we will come back to this later on, but we will
initially disregard this limitation.

(1)

The first order term e essentially offers only forces with /229

a short distance range; 1if the total angular momentum disappears,
Ekl behaves asymptomatically like R"e”BE, and if the total angular

momentum of the molecule is nonzero, a slight quadruple potential

is superimposed, which is independent of the orientation of the

rotary impulses to one another, and is based on the fact that a

rotating molecule has quadrupole symmetry 1in average time.3 TFor

large distances, as we can easily demonstrate, these effects are

proportional to" .

1 !

g SN =3t I 1) — 3m") | (12)
!

- o . i
(J,J' = the total angular momenta of the two molecules, m,m' = pro-

3 This is a correction of an erroneous statement in [1, p. 2u48].

A J(J+1)J'(J'+1)
“ For |m| = lnl = 1, we have an additional term = 5(
8R




jection of the latter on the line connecting the centers of grav-

ity of the molecules). ©On the average, they disappear for all orienta-
tions of the molecules and in general do not appear to be of very
great interest from the physical point of view. In atoms, these

effects occur as manifestations of the so-called 7Z-valences [4];
with regard to the latter, we do not know at the present time to
what extent a principal significance for chemistry can be assigned
to them.

The case of the "molecules", in contrast to that of the "radical",
is distinguished primarily by the fact that in the first approx-
imation, i.e., as long as the internal structure of the specific
system does not undergo disturbance, no noteworthy attractive forces
appear. The first approximation effects then essentially characterize
the cross section of the molecules and their compressibility; both
are data based on such short distances in the molecules that their
wave-mechanical calculation would require a gquite detailed knowledge
of the molecular periphery.5 However, we do not know the eigenfunc-
tions of the molecules exactly, so we will omit these data from
consideration since they are relatively easy to measure. This pro-
cedure 1s even more to be recommended, since the first approximation
alone would offer a very inexact figure for these distances even
if one could calculate it.

The effects which appear in the second order, on the other /230
hand, are of much greater distance range [2]; hence they can be
determined even with a relatively summary knowledge of the molecular
structure. They even give a rather good idea of the attraction pos-
sibility of the molecules, since the other effects are of short
distance range and are introduced very suddenly at short distances.

To this extent, it is also justified to consider these forces sep-
arately and to determine them theoretically while leaving the others
out of consideration.

We will now discuss at the same time still a third molecule
with the eigenfunctions Xg, X1, X2... and eigenvalues Ggp, G1, Go...
and at a fixed distance S from ¢ and T from ¢¥. Then the total inter-
action energy of the second order of the three molecules in the
states Yz, 975 Xy will be

Voo Poo I | ) o
N T Wetm, wvm ] | (13)
Erin = T T e A ST m’) == (klm
ko ~];7~Ffz'bk+pl+Gm'—EI:'—Fl'_ G ( )= ) i
with B (1)

7 ( * & %k ’
Irrl:l m, EUaw' = JV’I)U/C Fin Vi Pr Y dT1 de dTS. |

Here, W decomposes into three components as a Coulomb potential

> The conditions in this respect are more favorable for the radii
of ions. See [51.



function, each of which depends only on the partlcles of two mole-
cules and their distances:

P4 =g e 4

ap raﬂ By T;}y s Tya (15)

e Sl 8 TG
|
(e, = charges of the particles of the first molecule, eg of the
second molecule, e, of the third molecule, and r, TYa = the
corresponding intermolecular distances). Hence, all tzrms of
> ! ! !
WkZm, %17 with k # k', 7T # 1', m # m' disappear owing to the
orthogonality of the eigenfunctions. There remain only those terms
in which either k 8 k! or 7 = 7' or m = m’. It will then be advan-
tageous, instead of sz k17t to introduce the three functions
LR SR
(R)?> " (5)? " (8)°

)4 I r4 7
i Elm, 'l'm — "I, k'l' (R) ‘
i lm, KUm' = Ilm- Um' (S) "
Hklm, Hlm' = ILm L' (17) . i
since all other terms disappear. Then we see immediately that the

triple sum (13) breaks up into three double sums, each of which
depends on only two of the three molecules and their distances:

(16)

Ve (B ;
R, N ST ey VY : /231
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Lin, '’
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(17)
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The first component on the right-hand side corresponds through-
out to the expression given in (10) for the interaction of the two
isolated molecules Vi and ¢7. It depends only on the distance p,
and on this distance alone. When the third molecule is added, the
potentials which depend only on the distance of the third molecule
from the first two overlap additively, i.e., the force which counter-
acts the change of the distance between the first two molecules
(the differential quotient of the total potential for this distance)
is not affected by the presence of the third molecule.

The result here seems to be a quite trivial result of the addi-
tivity of the Coulomb potential functions. But it is by no means
so self-evident, as we can see, that this additivity is not at all
generally valid for forces of short distance range [6, p. 104],
although there the same Coulomb potential function serves as the
origin. Rather, there is a quite complex overlapping mechanism
which expresses the saturation of the chemical binding forces; it




is an actual fact that between two atoms there are quite different
force expressions in effect, depending on whether a chemical force
process has already been in effect between one of them and a third

atem, or not. It is precisely in this respect that the molecular
forces differ quite characteristically from the homopolar valence
forces. For the first approximation, we can show that it is only

in exceptional cases that the forces between two atomic systems
cannot be influenced by the presence of a third, and then only when
no free valences are involved. We see that in this case the rule
is also valid for the forces of higher distance range of the second
approximation. In the third approximation, however, there is no
longer any additivity under any circumstances.

The entire concept is therefore based on the fact that condi- /232
tion (11) is fulfilled for all terms in (10). It can be broken
down as follows: 1in the first place, while the left side vanishes

exactly, i.e., if the molecular state in question is distorted.
This means that we must consider primarily the following possibilities:

(a) Directional distortion of the orbital angular momentum,

(b) Directional distortion of electron spin,

(c¢c) With similar molecules, distortion caused by energy ex-
change (mirror symmetry).

We have already discussed case (a) at the beginning of this
section (12). The additions which it causes appear to be insig-
nificant, but nothing conclusive can yet be stated with regard to
them.

Case (b) gives rise to effects which are not additive, the valence

type effects which were mentioned above. However, since the latter
are of short distance range, we can simply put primes on those partic-
ular terms for large molecular distances. [This has been down from

the start in (10) and (8)]. Aside from this, in general we will
have the case that the resultant electron spin of the molecules
is zero, so that there is no distortion in this respect and there
is additivity even for short molecular distances.

Case (c) represents a considerable limitation of our consider-
ation. It is always found when one system can adopt an energy quan-
tum from the other and if no forbidden selection has been imposed
on the specific transitions; it offers a nonadditive effect in the
first order which is of much greater distance range than the forces
which we have discussed thus far. We have already encountered these
forces in special form in the discussion of the second term of (5).
However, as long as we do not have to deal with excited molecules,
these effects do not appear; they differ basically from the usual
molecular forces.

In the second place, condition (11) can be eliminated if the
left side is nonzero but small. Since sz gryr are dependent upon
3

10



E and vanish with increasing R in this case the condition is elim-
inated only for molecular distances below a certain limit; for larger
distances, the considerations regarding additivity are retained

in any case. This case shows up practically only in the case of

the densely packed rotation level of the molecule and is based /233

(generally speaking) on the conversion of the rotational movement
of the free or far-apart molecules into a cycling around the equi-
librium sites when the latter are brought sufficiently close to-
gether. Effects of first approximation also appear at this time,
which are not additive in any sense of the word any more than the
static mutual interactions of molecules superposed upon one another
according to the classic theory, which are in complete correspond-
ence to them.®

If we expand V in powers of 1/F then we obtain (if both mole-
cules are neutral, as we assume) a series which begins only with
the third term with which we break off:

2

€ - T
V= R3[§152+711772—2514'2]+'.,, ; -

Here e&;, en;, et; stand for the components of the electrical
moment of one given configuration of all the components of a mole-
cule while e£,, eny, eZy are those of the other. Accordingly, for
sz, pryr we obtain the series whose first term is also proportional

to 1/R3 and which generally, on the basis of the relationship
' ‘ 2, iz, . Jew 342 ;
SEvevedt P+ fnpepede P+ [ fOpoppde P= 57 m s

& The transition from rotation into liberation has already been dis-
cussed in this paper (§ 9) for dipoles on the basis of a very simple
perturbation theory treatment. However, I would like to point out
that the latter is applicable in sufficient approximation only for
the ground state of this transformation and the method of approxi-
mation must be continued further for the excited state. For a quite
rough consideration, the classical viewpoint will suffice, which
involves the magnetude of the kinetic energy of the rotational
movement; depending on whether the latter is larger or smaller than
the maximum value of the potential energy of the molecules taken
together, the motion will show a rotatory or oscillatory character.
In addition, we must also take into account the zero point motion,
which has already been mentioned in Formulas (37) in this paper.

In the case of molecules with a low inertial moment, this contri-
bution is already on the order of magnitude of the intermolecular
orientation forces and as we can easily estimate (e.g., in HI and
perhaps also in HBr) it may even be sufficient to make it impossible
for the molecules in the lattice bond to assume an arrangement in
the preferred directions, even at the absolute zero point. See also
the paper by Pauling [6]; however, I do not wish to trace in detail
the statements given there.

11



can be represented by the dispersion f-values of the correspond-
ing transitions.’ We introduce this into (10), and obtain

w_ 1 3 _(}ze) 57 - fergun “ (10) /234
5 ‘f’f (FL'— ’L)(F,_Fl)( k+Fl'—‘EL—'F1) 1

KT TR o
+ terms of higher order. J

Here fkk' and ggg+ are the "dispersion electron numbers" which
are related to the eigenfrequencies (E —E ) and (F -F ) of the

molecules, and which bear the follow1ng relatlonshlp to the polariza-
bilities ag(v) and B7(v) of the latter for the frequency v:

et he
ar() = m (37) ‘> (B — B =1 2' §[ (20)
:

eh Jir
&@F:m«° ) @p—E)—kr.i

Expression (20) can be used directly for determining (19). If
one of the f-values is seen to be particularly higher than the rest
of them, or (as is usually the case at the same time) if the en-
ergy differences which are involved (Ex'-Ej% and Fyr-F7) are very
close to one another, it will be possible to obtain a suitable aver-
age value of AEx or AF7 for the sums in (19) and (20) and then in-
troduce the polarizabilities, ap = az(0) and B7 = B87(0) of the two
molecules for long waves, into (19):

o 1 /3 AB AR !
TR 2 AE AR R (21)
For uniform molecules (AF; = AFZ = hvg, g, :.BZ) expression

(21) naturally becomes the expression which was obtained earlier
especially for quasi-elastic molecules (6).

With respect to the manner of writing the dispersion Formulas
(20) it should be mentioned that they do not quite agree with the
conventional ones if infrared eigenoscillations are present. 1In
the latter case, 1t is conventional to take into account the fact

7 If the resultant angular momentum of the molecule is # 0, we must
introduce the f-values of the corresponding individual Zeeman compo-
nents. The forces will then show a directional dependence. The
variation around the average value is such because there is a qua-
dratic effect which is very slight and is not particularly dependent

on the sign of the forces. In most cases, then, it will be permis-
sible to operate with the average value of the forces which have
been averaged over all the orientations. I would like to point ocut

once again that the forces are not to be viewed essentially as the
central forces.

12



that the inert nuclear masses are much easier to bring into reso-
nance than the electrons, and therefore to extract the correspond-
ing large masses of the atomic nuclei before the partial sums which
the infrared dispersion contains in order to obtain for the latter

an f-sum of the order of magnitude 1. This definition has not /235

been very apt thus far because the atomic masses involved cannot

be assigned individual eigenoscillations in molecules which have
more than two atoms. It would be much better even in (19) and (20)
not to introduce the masses at all, for the presence of them in
the dispersion formula has a completely historical foundation. The
fundamental molecular properties which are involved in (19) and
(20) are the Fourier components of the electrical dipole moment

of the molecule, which change rapidly with time and whose terms

can be obtained individually from the dispersion formula of the
molecule and used directly for constructing the molecular forces.

In this respect we have avoided writing this "mass free" rep-
resentation of the formulas and have contented ourselves with extract-
ing always one and the same mass, that of the electron. This is
because the contributions of the infrared dispersion terms in most
cases can be disregarded anyway and because dispersion measurements
are now usually written in this form.

§3. MOLECULAR FORCES IN COMPOUNDS

It is of considerable interest to compare the attraction con-
stants (g3 of forces between molecules of two different molecular
types a and b with the attraction constants Ca and (py which describe
the forces between molecules within the indiv1%ual types and
In most of the force laws known to us, such as the Coulomb or gravi-
tation law,

o i
CoaCry = C3y. 1

Expression (21) shows, however, that in the molecular forces

under consideration here, owing to the identical nonequivalency

9

P

AE+AF\:

(— -~-—fv--~) =AEAF
we must always have } 5
CeaCry=Cou 3 (22)
and that the inequality is particularly involved only for AE = AF
and this result is still valid beyond the special assumptions which
are the basis of the approximation Formula (21), quite generally.
For postive vz and u; we have the identical inequality

) CT |
N S NT qige \( St feg \FO
B B il i I (22a)
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The forces in a compound are therefore in general weaker than /236
the geometrical mean of the forces in the pure substances and they
are weaker by a degree which increases the further the character-
istic spectral ranges of the two types of molecules are apart.

This effect can be considered as being definite only in the
rarest cases. Usually we are missing either the value of the inter-
action energy for the minimal distance of the molecules or the
integral of the mutual interaction of this minimum distance to in-
finity. In any case these are expressions which can be given in
the following form:

_— Cab Caa Cbb :
- (“th) A
2 |

where da and db are the diameters of the corresponding molecules.

) d. 4+ d.\2n |
However, if dg # dp, then (J?;J» >,dgda%and
A2b<AaaAbb) |

even if Céb = Cqalpp. Such a confirmation of the compound form-

ula could therefore be valuable in a consideration of this circum-
stance; merely from the distortion of compound diagrams we gener-
ally cannot draw any firm conclusions. In the opposite case, how-
ever, when the effects of the compound forces exceed the geomet-
rical means, we can say with confidence that forces of some other
type must be involved, such as specifically effective valence forces,
etc.

§4. LATTICE ENERGY OF MOLECULAR LATTICES

Of those applications which molecular forces can find, we should
stress especially those which are based on the relationships de-
termined empirically long ago between the van der Waals attraction
effects and the surface forces as well as the heats of sublimation
of molecular lattices, and which could not be explained at all satis-
factorily with the idealized concepts previously employed. For
example, in the series of hydrogen halides HC1l, HBr, HI the heats
of sublimation S increase while the dipole moments p of the mole-
cules and their reciprocal distances 1/F decrease in the solid state;
it is therefore of no advantage to attribute the lattice emnergy
of the so0lid hydrogen halides to dipole effects alone (see [8] and

[9], its review in the Handbook of Physics, Vol. 24, the article /237
by Born and Bollnow on p. 450). In any case the polarizability
aincreases in a series. However, the possibility of producing an

induced dipole moment by polarization is not involved for reasons
of symmetrg in the solid state; in any case, it would involve the
product ap“ which decreases sharply in the series under consider-
ation.
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TABLE 1. /237

. S in !

.1018 L1024 R-108 .
w10 «-10 l 1 Keal/Mol }
\
e 1-03 2.63 3.89 505 }
1Dr 0.78 3-58 4-17 902 [
HI| 0-38 5-39 45 621 |
. |

The short-period interactions with which we are concerned, on
the other hand, are not subject to the latter objections; they super-
pose themselves additively in the lattice bond in the first ap-
proximation and since they behave in proportion to a? and are inde-
pendent of the inertia u there is a possibility for attributing the
increase in lattice energy mainly to them.

Naturally the dipole moments will also make a certain contri-
bution to the lattice energy, but we can estimate that the latter
must be very small in this case.® We will therefore begin by cal-
culating the lattice energy of these lattices without considering
the slow periodic terms which contain the dipole effects and other
forces which depend on the orientation. The potential between two
molecules which are at rest at a mutual distance K is written as
follows:

C
<F=“R‘e+b(R)- ? (23)

The attraction potential‘éég can be given by Equation (6) and
possibly by (19), while the repulsion b(R) which appears primarily
in the first approximation of the defect process, cannot be given;
we know that it vanishes somewhat like Rne"BR, in other words rather
suddenly, where n is approximately equal to 3 [11]. Therefore, /238
it does not appear very sulitable to use here the conventional expo-
nential equation for the repulsive force, because the repulsive
force breaks off more suddenly than any power. The experimental
data from which we are accustomed to calculating the repulsion law,
compressibility and thermal expansion, more accurately provide only
the second and third derivations of the potential at the equilib-
rium configuration; however, for the consideration of the absolute
value of the potential, the precise form of the repulsion poten-

8 see [1], pp. 277-278. It has already been pointed out in [10]
that in the HC1 lattice of the modification which is stable above
98°, the molecules are free to rotate. A rather crude estimate of
the dipole forces in the lattice shows that the directional forces
of the temperature movement no longer exist at this temperature.
In the case of HI, the directional forces are so weak that they

can be overcome by the zero point movement alone.
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tial is critical and it is completely anticipated by the exponential
equation. We can attempt to determine the constants in the above-
given b(R) from experimental data, but in view of the inaccuracy

of the balance of the calculation, I did not consider it worthwhile
to go into such detail precisely on this point. TFor a first orien-
tation, we will assume that the power ¢ = 5% extends from infinite

distances up to the equilibrium configuration and it can then sud-
denly make a sudden jump to + o for smaller distances. We will
ocbtain the distance in the equilibrium position from the measured
lattice constants. The model is naturally not suited for showing
the compressibility, but it will suffice to illustrate the energy
relationships in analyzing the lattice; in general, there is nothing
against refining the model at any time in the sense indicated.

As the lattice energy at the absolute zero point, we then have

C —~ 1 C N, «— ?
@=—§'NL2; Rg‘=“._;“dclﬂ.@» ;’ (2u)
where
d\ ) |
N v() (25)

i 4 |

Np is Loschmidt's number, R; is the distance of a central atom which
is fixed in the summation, i.e., located far beneath the surface,
from another atom in the lattice marked with ©Z ; the sum is taken
over the entire lattice and converges very rapidly. d represents
the lattice constant.

|

. d 6 .

The sum 53(12)! was calculated for the face-centered cubic
il

i
lattice, since the latter is the one most often encountered. Up
to R = 3d, direct summation over the 458 molecules involved gives

i

a value of 117.42. For the rest from R = 3 up to infinity, we /239

find, by integration, the contribution l§“= 0.62. In general, we

obtain a rather exact value of 118.0 for ¥ with an error of less
than 1%. The lattice energy of the face-centered lattice is there-
fore

(26)

For calculating ¢, for lack of better data, we will generally
use Equation (6). 1In some of the materials under consideration,
rather precise dispersion formulas are already known. They indicate
that very often a single frequency makes such an overwhelming contri-
bution both to the molar refraction as well as to the molecular
forces that the other terms of the dispersion formula can be dis-
regarded. In saturated molecules, this principal frequency vy appears
to lie mostly in the immediate vicinity of the series boundary,
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and even shortly behind it in the continuum [12]1. To the extent
that it was possible, we employed these data and were able to use
the simple Formula (6) for calculating C since we were dealing with
single-term dispersion formulas throughout. Values not very dif-
ferent from these are obtained if we use as the principal frequency
vg the series boundary; this makes it possible for us to obtain
a certain degree of justification for our method since in a few
cases, for lack of better data, we relied only on the series bound-
ary since the electron configuration of the molecules involved is
not very different from that of the others (rare gas shell in HC1,
etc). The figures which use only the series boundary are given
in the following in parentheses. If we express Avgy in calories
per mole from (J = Npyhvg), then we also obtain ¢ in calories per
mole:

--0956 AP 5‘3;]

&

I

|
| co

|

I

-
|

It is often more suitable to carry out the calculation using
the density p instead of the lattice constants. For the face-centered
cubic lattice, we have

4 M (
Q:-——~AA——0 - i
&N, |
(M = molecular weight). Then for the lattice energy, we have
3 Nro\® ea\’ W
=— 50> ) J=—1015-10*3 (=] -J.
& 64OJ( ﬂ[) af] 1-015 5 ' a (27)
Table 2 lists the heats of sublimation (5 = -%) of the hydrogen /240

halides calculated according to this formula and a few other mo-
lecular lattices and they are compared with the empirical values.?

The formula, strictly speaking, is applicable only at the absolute
zero point, since it contains only a contribution of the potential
energy. It must therefore be compared with the heats of sublima-

tion extrapolated to the absolute point, and the extrapolation will

be carried out in the classical manner since we also have disregarded,
in theory, the zero point motion. 1In the case of argon and in the
modification which is stable below 98° for HC1l the structure is

found to be actually cubic face-centered [10], as for N2 and CO

[12a]l. X-ray analytical structural measurements are lacking for

the other materials; for the large part, they all show different
modifications, but the lgy(g'
' 1

[
)}'in general may show a contribution

% In the discussion of the empirical material, I had the kind assis-
tance of Prof. Simon, as well as Miss Zarniko; I would like to thank
both of them at this point.
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per mole which is not very different from that of the closest packed
structure. In general there is not the slightest difficulty in also

TABLE 2. THEORETICAL AND EMPIRICAL HEATS OF SUBLIMATION

| 1
theoretica]ﬁ]r;l:,?ss' ¢
7 heats of sublimgr ;
0"0b o104 A L ’lff\’ sublima-{7,; - | remarks o
( abs.; . c4 //;IO] tiOI} ]‘-n" ex%ra | ;
kcal/mol] {polated |
to 0° f
Ne 1-4 039 | 202 | 491 592 (0-40; 0-47 0-59 |
Ny ] 103 | 1% | 25020391 396| (161) 164 | 186 . |
O: | 145 | 157 |3200|.299) 839 | (148 169{| 159 upper modlflcatﬁon
4 190, o 163 | 3988|354 402| (163 208 | 203 | O or  ” |
co | 1019 195 | 2800|(329; (1-86) 209 | u=012.10-1
CH; | 053(w] 258 | 16.03 | 334) 326] 2. 17) 2.42 250 | |
NO | 158 106 | 8001 (285; 332| (2.04 2.89 4.29 |polymerization
HOU | 156 | 283 | 36.47],315) (4.04) 505 | u=103-10-15 |
CHBr| 273 3-538 | 80.93] ;306 (4-53; 562 | u=078-10-18
i 351 | 540 [127.93|(292) (6-50) 621 | u=0338.10-18 |
Cla | 20 460 | 7092 (419 (7-18; 7-43 |

evaluating the corresponding very rapidly converging lattice sums

in case we are also interested in other types of lattices. The
densities are extrapolated to the absolute zero point as though /241
the substances had no critical point. In general, the difference

caused by the different modifications is very small (except in the

case of 0j5).

Naturally the data contained in the table are to be considered
only as a first crude approximation, but we can see that the forces
which we have placed in the foreground are critical for the order
of magnitude of the lattice energy of this molecular lattice and
that they especially give the pattern of the latter within the entire
series correctly without exception; thus, e.g., the HI-lattice is
held together by basically the same forces as the argon lattice.

At the points which show greater deviations, we can also expect
theoretical deviations downward, since here other forces are to

be taken into consideration: in HCl and HBr the dipoles are not
completely ineffective for the pattern of the heats of sublimation
primarily, as according to previous theories. In NO, there is a

strong tendency toward polarization in the liquid state, which is
also expressed, e.g., in an abnormally large value for the Trouton

10 g5ee [12a]. The measurements are based on approximately 20°
absolute temperature. The molecules are rotationless in the cor-
responding modification.
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constant of NO,. In general, all of the theoretical values seem

to be too small; this is particularly startling when we realize
that the forces of repulsion which we have disregarded would make
the theoretical values still smaller. On the other hand, however,
in crystallized N2, CO, etc., in which fixed orientations of the
molecules have been determined by x-ray analysis, the directional
forces cannot be completely disregarded so that at such short dis-
tances it is no longer possible, strictly speaking, to idealize
the molecules simply as fixed force centers, i.e., to disregard
the higher approximations.

An effective control over all these additional conditions can
scarcely be expected. Therefore, we will have to place stricter
demands on the accuracy of the numerical determinations. However,
our own consideration appears to indicate that if we wish some gen-
eral idea of the force effects which are developed and are acting
here, we must think primarily of the attraction forces which are
particularly simple here. Naturally, the bigger and more complex
a molecule becomes, the greater become the orientation forces which
are produced by the pure space problem of the orientation. 1In these
molecules, we will not be able to get any idea of the force effects /242
without considering other details. This circumstance makes itself
particularly clear even in the relatively elongated CO2-molecule.

If we compare expression (26) for the heats of sublimation with
that given in (16) for the van der Waals g, or with the critical
temperature T3 taken from this a together with the van der Waals b,
we get:

P
T = const,

k

which is the familiar Pictet-Trouton rule. In any case, the deter-
mination of the constants on the right side is blocked by the uncer-
tainty that the van der Waals b is characterized by that molecular
distance at which the interaction potential disappears, while for
the lattice energy the somewhat greater distance of the potential
minimum is critical. If we assume the latter distance to be about
21-24% greater than the former [15], then we get the empirical value
13-15. In this respect, we should note that & does not stand for

the heats of evaporation but rather for the heats of sublimation

at absolute zero; the point Tp represents the critical and not the
boiling point.  Since the value of the theoretical constant also
varies very strongly with the fixed power of the assumed distance,
no particular importance can be attributed to the numerical deter-
mination of the Trouton number.
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§5. APPLICATION TO GAS ADSORPTION!!

The idea has frequently been expressed that the surface forces
which are effective in the phenomena of adsorption could be iden-
tical with the van der Waals forces [16, 17]. According to what
was said at the beginning, it is understandable that as long as
we limit ourselves to electrostatic effects [18, 19] this relation-
ship does not receive any satisfactory theoretical explanation since
in the case of an overlapping of electrostatic forces of the in- /243
dividual molecules of an adsorbing wall, a considerable compensation
of the effects outward 1s unavoidable. If, however, as E. Hickel
pointed out in his book [20, N.B. p. 1261 , apparently correct orders
of magnitude are obtained for the electrostatic interpretation of
the adsorption forces and for different models of the wall and ad-
sorbate, he was able to do this only if he acted on the basis of
the distance of the adsorbate from the wall atoms, which is less
than the distance between the atoms inside the walls; consequently,
he is satisfied by the fact that (extrapolated to such small dis-
tances) gquadrupole forces can provide greater contributions than
dipole forces. This is a criterion for the fact that the range
of competence of the dipole and quadrupole theory has already been
exceeded.

In many cases, it is undoubtedly true that charges, dipoles,
and free homopolar valences will make themselves considerably promi-
nent on the wall surfaces. The effects, for which characteristically
even the sign of the forces changes from place to place over stretches
on the molecular scale, and which therefore underlie the mobility
of the adsorbate along the wall to a considerable extent, should
really be considered as more than chemical polar or homopolar bonds.
The typical case of adsorption seems to be particularly marked by
the fact that the adsorbate (even in the film) shows a considerable
mobility along the walll? and should be considered there as a van
der Waals gas.

I am presenting here a compendium [22] of those signs which
would be viewed as significant from the phenomenological viewpoint
for the ideal case of pure adsorption. It is understandable that
an idealization of this type for the conditions always avoids only
an approximation in reality:

1. The adsorption forces are independent of temperature.

11 see in this respect an article by M. Polanyi and the author re-

garding this subject which is being prepared for publication in the
journal Naturwissenschaften.

12 see the experiment by Volmer and Adhikari [21].
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2. The adsorption force, which acts on an adsorbed molecule
at a given point, is independent of whether the neighboring region
is filled by adsorbed molecules of some type or not.

3. The adsorption forces do not influence the internal forces
which act between the adsorbed mclecules; therefore, the same state
equation which applies to the adsorbed material in the usual state /244
is also applicable to the adsorbed layer.

For this concept (developed primarily in [23, 24, 25, 26]) which
was not directly justifiable from the viewpoint of the electrostatic
theory and therefore has been repeatedly attacked, the molecular
forces mentioned here give the desired explanation. Even if these
forces, corresponding to the lattice structure of the adsorbent,
will not be exactly constant along the wall, they will still vary
within relatively narrow limits and in any case will not change
their sign locally. Moreover, this makes it possible to consider
the adsorbed gas (even inside the film) still as a gas and to assign
to it a certain mobility and free path length. In addition, according
to the previously proven superposition principle of the molecular
forces, we can assume that the forces which prevail between two
adsorbed molecules will be modified relatively slightly by the ad-
sorbent so that in the first approximation, we can operate even
in the adsorbed layer with the van der Waals forces of the free

gas. Finally, our molecular forces contain at least one important
component which is independent of temperature, since its average
value does not disappear completely over all orientations. In gen-

eral, the forces are almost completely independent of the orienta-
tion of the molecule and therefore of temperature as well.

Given the attraction potential ¢ of an atom or molecule of the
adsorbent designated by 7, calculated on the basis of (21) with
a molecule of the adsorbate at a distance FRj
c

¢ = - —
6
Rz

From this we can calculate the potential of the molecule rela-
tive to an entire wall at a distance d with particular simplicity,
if we keep in mind that generally the distances of the wall atoms
from one another can be smaller than the distance at which the ad-
sorbed molecules can approach the wall atoms so that the summation
over the atoms of the wall can be replaced by an integration. At
these distances the forces no longer show any considerable variations
which reflect the lattice structure of the wall. Thus for an infi= /245
nitely long wall, we obtain as the adsorption potential:

) m e

~C NaC 1 ! (28)
(pads=/(Z;/Rs'Ndv= 8 "8’ \‘
- h ]

Here N is the number of atoms of the wall per cubic centimeter.
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The exponent of the potential is naturally reduced by 3 in inte-
gration over the three dimensions of the wall so that the effect

is proportional to the density of atoms of the adsorbent. According
to its derivation, the formula is, of course, only applicable for

d >

slowly with distance from the wall, much more slowly than the forces
of the electrostatic models usually discussed. If we use the spe-
cial value of (21) for C, then we obtain as the adsorption poten-
tial:

T~ which usually is the case. The forces decrease relatively

@ _Nmad JJ
ads_ﬁf'@‘:f;f’ ’ (29)

Here the values with primes on them can be used for the adsor-
bents.

It is scarcely possible at the present time to evaluate (29)
because the required experimental data are lacking. In particular,
we lack knowledge of the characteristic energies J' for the adsor-
bents. It may be that the infrared eigenoscillations may often
play a significant role here so that we could use the more precise
Formula (19). Many of the adsorbents are conductors; in this case
the picture which we have developed here is completely wrong, although
it would not be difficult to make a similar study of the short-per-
iod defects of the electron movements in a metal.

In order to have at least some idea of the size ratios, let
us calculate the following model which may have more than fictional
value: as the polarizibility o' of the adsorbent, let us take a
value which is obtained from the atomic refraction of carbon, o' =
0.87:1072%, as the density, that of graphite (2.23), i.e., N =
0.113:102%., For J' let us select the value of 259 kcal, which cor-
responds to the ionization voltage 11.2 volts of ¢ [27]. Then we
get for the adsorption potential of a gas with polarizability o and
characteristic energy J at a distance d:

| /246
0-113 7 a ‘ }
= — . 2 @ e k 3.1 |
D,qs 4 0-87-259 250+ J) c pro :M,01 l
Ja 1 |
=200 5—-————-k Mol.
00 B9+ 7) keal pro Mo !

The minimum distance d is divided into
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dy
where - = 1.67 2 stands for the half-distance of the layers of

the graphite lattice. We will assume that for molecules which do
not react chemically with carbon atoms, the critical atomic radius
of carbon is that which regulates the relatively large distances
between these related layers that are evidently not connected by

chemical valences. It may that the forces which the layers of a
layer lattice exert on one another are identical to those discussed
here; in any case this calls for further corroboration. dj is the

molecular radius of the adsorbed gas, taken from van der Waals b.

If we go on to calculate over 40% of the repulsive force (naturally,
quite arbitrarily), which would correspond to a repulsion exponent

n = 10.5, we obtain:

TABLE 3. HEATS OF ADSORPTION

) a J ads (theor.) | Pads lexper.) |
« - 24 4 d3. 24 |

10 a2-10 inkeal/Mol | in keal/Mol | in keal/Xol
He 0-20 27 589 0-62 0615 ‘
Ny 1.74 34.3 396 3.7 3.23 \
A 1.63 30.9 402 ) 38 3.59 \

CO 1-99 334 (329) | 4-0) 4.08
CH, 2.58 356 326 4.9 4.87 \
CO, | 265 388 394 50 5.56 |

We selected all those substances which were collected by Hiickel
[20] as well as data for the theoretical treatment. The agreement
of the theoretical and experimental figures 1is so considerable that
we feel it necessary to warn against drawing too many conclusions
from them. The simplifications used as a basis are very consider-
able if we have made a calculation which is at least provisory for
the influence of the repulsive forces so that the agreement of the
data as far as order of magnitude is concerned should really be
taken as a confirmation. In particular, the experimental data them-
selves are very difficult to interpret: the value of the adsorp- /247
tion energy is dependent on the concentration of the adsorbed gas
and it is not easy to decide whether at smaller concentrations one
would not be getting too high values, while the gas is first caught
in splits and cracks in the wall, in which naturally there would
be a higher potential than on a flat surface. On the other hand,
at high concentrations, the adsorption potential due to mutual trap-
Ping of the gas molecules is generally reduced. In addition, we
would also have to discuss the adsorption energy at the absolute
Zzero point for comparison. However, there does not appear to be
the slightest degree of inaccuracy in the fact that all the meas-
urements refer to charcoal and not to graphite. All of this must
remain undiscussed here. The fact that the theoretical values agree
S0 precisely nevertheless should be viewed as purely accidental.

In view of the extraordinary complexity of the situation, the
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lesson of the theory does not seem so much to be that of offering
numerically precise data which can be matched against experimental
data only very inaccurately, but rather of presenting a proof that
the theories already existing, which are mainly phenomenologically
oriented and which appear to largely contradict the balance of our
knowledge of atomic physics, actually appear to be justified to

a considerable extent today.

Similarly to the Pictet-Trouton rule, we can also derive a cor-
responding relationship:

¢nds '
v = const ,

- I i
at least if we assume for the sake of simplicity that the value
of ¢®_,45 has already been determined to a considerable extent by
its dependence upon a (cf. Table 3); this means that we can disregard
the deviations from the mixing relationship discussed in § 3. We
will avoid going into other details here as far as this relation-
ship is concerned; Eucken has already pointed out the relationship
between the van der Waals and adsorption forces so that we have
nothing particularly new to add to it. Aside from this, however,
we would like to assign a quite heuristic significance to this rela-
tionship to an increased extent, since as we have said it can be
derived only on the basis of a disregard of factors which are not
always insignificant.

§6. MOLECULES WHICH ARE BOUND BY VAN DER WAALS FORCES /248

Recently, band systems have been investigated whose carriers
are extremely loosely bound molecules and which one usually thinks
of as being held together by van der Waals forces, since we usually
think of compounds with chemically inert materials such as rare
gases. We are in a position to offer a quantitative basis for this
interpretation by calculating the dissociation energies of those
molecules. These are the molecules Hgp , HgKr, HgA.

For Hg we have a detailed dispersion formula [28] so that when
we can use the more precise Formula (19) which is extremely val-
uable to us since the Hg-spectrum (owing to its considerable length)
does not permit use of the simple Formula (6) any longer. The result
will be two series of f-values [28] which are quite suitable for
showing the dispersion of Hg; in the following, we will use the

second series: the other would give approximately 5% lower energy
values,
- TABLE 4.
i
‘A) ! k o | ‘ ‘ ,

LA . (Volt) ! fl;O 3y i ka {IL

2537 | 488 00255 | 00255

1850 6-67 0.713 | 0-956 !

1403 879 ;2266 |

1190 | 1038 | 2590

24



With these values we obtain from (19):

17600 -10%% forf .
=_—— N of:Jol — Volt |
&= PENES o ‘
yids ﬁ%(Ew—bdwﬁ“ M+ E—2E) !
17(300[ 2:59° 2:2:59-0-956_ 0-956° ;
0% 2 1038 T 16386671705 T 2. 667 |
2.2.59-0-0255 0-0255% 2-0-956-0-0255 {
+ 567t R — ;
10-38 - 4.88 - 15-26 -4.88 4-88.6-67-11-55 |
17600
 R°10%

|

- (060300 - 000420 + 0-00155 + 0-00 017 -+ 0-000003
+ 0-00013) o
15

9
== peioe Volt. |

With R = 3.5 R (gas kinetic diameter of the Hg-atom) we obtain
0.086 volts for the dissociation energy, if we suddenly allow the
repulsion forces to become effective.

In calculating the dissociation energies of HgA and HgKr we
lack dispersion formulas of equal precision for argon and krypton.
Here we will rely mainly on the single term dispersion formulas
given by Herzfeld and Wolf whose center of gravity in the contin-
uum lies shortly behind the series limit. The corresponding energy
difference in volts is called AF, its f-value is g and o is the
static polarizability; for Hg we will once again use the same f-
values as above and will make use of a mixed formula composed of

(19) and (21):

,__ 1 3 (hg){g 5 fr
RS 2nt\on AF <= (k. )MF+E;-F) :
1 3 <7{E)2(ZA}” SY_ . fOk J
TR 2mi\2g “ (Lr—B)YAF+E,—E) |
164 for |
_ aAF \‘7 , ol Volt. ‘
TR0 T e (B, EMA P+ E,—E,)
With o = 1.63-1072%, AF = 17.5 volts and the atomic radius

1.47 & for argon, for the contribution of the attractive forces
to the dissociation energy, we obtain:

164 oy 1~ ] 00255 0-956 " 9.59
Dgg_.1='3.2,26-1~()3-11-o[ o 4 ]

358224 T G607, 048 T1038.97.9

= 0-063 Volt.

In exact correspondence, we calculate with o = 2.46-1072%  Ap=
14.7 volts and atomic radius 1.21 & for krypton, and we find the
dissociation energy of HgKr as 0.075 volts.

Let us contrast the dissociation energies which we have cal-

25




culated with the experiment values:

TABLE 5.
| D (theor.}
~ D :
’ in Volt (exper.)
Hys o oo .. l 0-086 looo+[29 30,31]
Holtr....| 00 | 003[32]
Hgd.....| 0063 0025 327"

The agreement would be still more markedly improved if the re-
pulsive forces could be used in the calculations; prcbably the atom-
ic distances which are assumed were also selected a little too small.

/250

But there is probably no point in discussi

§7. LIMITS OF VALID
Finally it should be mentioned that th

(6) and (19) cannot be used with complete

we might otherwise come to the conclusion

ng this further.
ITY

e attraction Formulas
freedom. For example,
that the chemical bond

of Hy should be viewed as a van der Waals bond, for from a = 0.66"
10-24%, hv = 13.5 volts, R0= 0.75 & we can calculate:
|
3 066' 13-5 o
S oS =246 Volt. |
T4 0-75° |
This would be about six times the binding energy of Hy,. We

have already pointed out that the operation with a polarizability
o is only sensible at distances R for which R3 » o. Here, however,
R3 0.64 a. If two systems should approach one another above the
boundary distance mentioned, they would undergo more or less sud-
denly a very considerable internal reconstruction of the electron
paths and would tear one another apart by polarization. This is
no longer taken into account by our approximation formulas. Quite
a long time ago, Herzfeld [33] pointed out that in solid bodies
the metallic and nonmetallic states are separated by this bound-
ary distance. This also limits the range of applicability of the
theory given here. In the case of chemically bound H,, the atoms
are so close together that their "natural" volumes, characterized
by a, penetrate one another mutually, so to speak. For checking
the applications which we have listed here, we have assembled the

quotients 2—:
R3
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We see that our considerations are always within the limits /251
given;.ﬁ? is the defect parameter of our expansions, and actually
R

a
a value which is small relative to 1. Hg, withrgs-: 0.13, may

already lie very close to the limit of admissibility. The attrac-

tion forces calculated above, which were found for Hg,, HgA, HgKr

in the correct order of magnitude, remarkably do not suffice to
determine the critical data of Hg. This may have a direct relation-
ship to the fact that Hg is conductive, which shows that the rearrange-
ment of the electron structure (mentioned above) is fulfilled in

liquid mercury, if not in the Hgs-molecule.

Another limitation to our consideration comes from the necessity
of taking into account in complex molecules (carbon chains, etc.)
the differential attraction ability of the individual molecular
ranges. It is clear that it is most likely in molecules as simple
as those with which we have been dealing so far, that the ideal
of pure force centers can come half-way close to reality. In our
work, moreover, we have been able to limit ourselves to a consid-
eration of only the short period terms of the interaction. In highly
dipolar substances, especially those with relatively low polariza-
bility (H,0, NH3, NaCl, etc.) as well as spatially extensive mole-
cules, the slow periodic (rotation) terms, or those static terms
which come from the latter with conversion of rotation into libration,
make a considerable contribution, one which is moreover dependent
upon temperature and can no longer be ignored; it agrees completely
with the familiar static effects of those charge distributions, pri-
marily the so-called Keesom directional effect (see § 2 under "In
the second place..."). However, I should like to avoid going into
such details here.
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